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ON THE STABILITY OF NON-LINEAR STATIONARY WAVES* 

A.L. ZHUPIEV and YU.V. MIKHLIN 

The stability, to a first approximation, of stationary travelling waves 
is studied for the Klein-Gordon equation. The corresponding equations 
in variations are reduced to the form of equations with singularities. 
The cases when the equations in variations represent the Lame equations, 
are singled out. In the latter cases an analysis of the stability to a 
first approximation can be carried out to conclusion. 

1. Consider the non-linear Klein-Gordon equation 
'Pxr - (Pti = P (TJ) 

where p(~) is an analytic function. The stationary waves represent particular solutions of 
the form m= Q(E),E;=z- ut (we assume that the function Q(t) is bounded at infinity), defined 
by the equation 

(1 - u*) QkE = P (cp) (u i 1) (1.1) 

with the first analytic integral 
0 

'ii (I - ul) Q:? = F + P (Q); F = conpt, P (Q) = s p (3) dz (1.2) 

0 

The equation in variations for the stationary waves (in the 5, 1 variables) has the 
following form: 

Y:k (1 - u*) + 2yE,u - y,t = p. (CD) y 

Applying a Laplace transform in t, we obtain an equation for the transformations I'& 5) 
where s is the transformation parameter. Carrying out the substitution v= eAkW where A = 

--su:(l - I?), we shall write the following equation for W with coefficients variable in 5 : 

2Uz (1 - u?) -L 11. (B - pQ (Q)) = 0, B = .+/(uz - 1) (1.3) 

Let us consider the linear stability in t of the stationary wave in the class of perturba- 
tions bounded in 5 /l/. In this case the existence of such perturbations at s*>O indicates 
that the wave is unstable. 

Henceforth, it will be more convenient to use new variables connected with the solution 
in question. If we replace 5 as the independent variable by Q, then, using (1.1) and (1.2), 
we obtain in place of (1.3), 

2H,, (F + P (Q)) + T~‘@P (Q) + W (B -p. (@I) = 0 (1.4) 

Choosing z= Q2 , as the independent variable we obtain 

81i;,z (F + P (V3) -k IV, [4 (F + P (1/L)) + 21/, (l/& + w (B -- pm (l/i), = 0 (1.5) 

which is appropriate only for the even functions p(Q)). 
Finally, if we use the kinetic energy of the stationary wave K= F+ p(Q), as the independent 

variable, the equation in variations will become 

21i.&fpz(Q (A')) -t Ivk [2Kp, (0, (K)) i p* (Q (K))] 7 11' IB - P* (Q (K))J = 0 (1.6) 

Let us separate the classes of functions P(Q) for which the equations obtained represent 
the Lamer equations. In this case we can determine the domains of boundedness and unbounded- 
ness of the solutions of the variational equations 

a) P = D1 sin Q- D, cos Q,, p = D, cos Q + D, sin @ 

(the Gordon sine equation). Here we must use equation (i-6), which is reduced to the Lame' 
equation in its standard form /2/ 

Il’k,+l’, h++&2+ ( _&-) + TV 
If-n((n+l)R 

h --~a 4 (K-VI) (K -_y2) (K-_-a) = O 
(1.7) 

Yl = 0, Y2,3 = F*l,H=2(F-E),n=l 

The last equation shows that the (F,B) parameter plane contains one finite and one in- 
finite domain of unboundedness of the solutions /2/ 
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b) P=D,shQ,~L&ch0 

n= 1. 
IJsing again the equations (1.6) we arrive at (1.7), where yl= 0,y,,,=F~l, N= Z(F-B), 

c) P = apa/2 f a,@14 

Here it is best to use the equation in variations in the form (1.5). In this case it wili 
also be reduced to the Lam& equation of the form (1.7) where 

nrh’, y,=o, y:,s=- %&1/~)'-4$ H=?+, n=z 

The last equation indicates that two finite and one infite domain in which the solutions 
are unbounded, exist in the parameter space 

d) P = (0 -n) (Q - YZ) (Q - ~a) -P 

In the case we must use equation (1.4), which reduces to the standard form (1.7) when 

Q ss K, H = B + 2 (n + y, + ys), n = 2 

We note that we have shown here all cases in which the variational equation of the stat- 
ionary waves of the Klein-Gordon equation is reduced to the form of the Lam; equations. 

2. The regions in which the solutions of the Lame/ equations are bounded and unbounded, 
are known for n== 1.2 /3/, and this makes it possible to study the stability of the stationary 
waves with respect to time. The boundaries of the corresponding regions for n=l are shown 
in Fig.1, and for n= 2 in Fig.2. Here h = k - %)i(el - e,), JI = (H - II (n + 1) ea)/(el - Q) (e,, e,, e3 
correspond to yl, yI, vd introduced earlier, which are arranged in such an order that the 
inequalities e,>e,>~) hold. The regions of boundedness are hatched, and curves 1-5 in 
Fig.2 are described by the equations 

1) p = p+(h), 2) p = 4 + b, 3) p = 1 + 4h, 4) p = 1 + A, 5) jl = Jl- (1) 

(p* (1) = 2 (1 + A. *V ba -A + 1)) 

The stability in time is analysed as follows. Taking every solution in the form of a 
stationary wave, we find out whether bounded solutions of the equation in variations exist for 

l'>Or which would indicate the instability. If no such solutions exist for 9>0, we have 
stability to a first approximation. 

As an example we shall carry out the corresponding analysis for the Gordon sine equation 
for case a) where we write D,=O,D,=l for simplicity. The regions of boundedness and un- 
boundedness shown in Fig.1 are also shown in Fig.3 in terms of the parameters B, F;B* =‘/,(F+ 1). 

Let us single out the following classes of solutions of the initial equation /4/: 
periodic waves for 1 F 1 < I, 12 - I> 0 or 19 - 1 < 0; 

spiral waves for F< -1, u2-l>O; 

spiral waves for F> 1, u2-I<<. 
It is clear (Fig.3) that when F> -1, the bounded solutions exist for B>O as well as 

for B<O (here we have 9~0 and sz>O ), and this implies that the periodic (jFI<l) and 

spiral (F > I, u* - I< 0) waves are unstable in the class 
finity. 

of the perturbations bounded at in- 

Fig. 1 Fig.2 

For the spiral waves (PC -_1, Uz-l)O) the bounded 
since $-l)O),which implies the stability to a first 

We shall consider the case b) as another example. 

solutions exist only when B<O (ss< 0, 
approximation. 
The conditions of boundedness of the 

solutions of the equations in variations (Fig.2) are written in the form 

p-(I) < cI< 1 + iL, 1 + 4k< c1<4 + h. p+(b) < p 

Let F = 0, a, = a, = 1. Then 

e, = c* = O,e, = -2,h = 1, p = B + 5 

Fiq.3 

(2.1) 
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The conditions boundedness of (2.1) lead to the inequality B>l or *'>U=-l when 
u2-- l> 0, and s=< u2 - 1 when u2- 1~0. It is clear that the condition sz>O (instability) 
may hold when uz-l>o, and the solution is stable when u=- 1 <O. 

Let F = --31jG. a, = --a, = 1. Then 

el = 312, e2 = '12. cQ = 0, li = '1~1 p = -VSB + l/s 

The conditions of boundedness of 12.1) lead to the system of inequalities 0.9< -V3B< 1: 

2<-4'l,B<d; 4.1~ --'lsB, and this implies that B<O. It is clear now that s*> 0 when u2-i<O 
(instability) and s?< o when II?--1>O (stability). 

Finally, let CL~ = --a, = 4, F= 3. Then e, = 3, Ed = 0, e3 = -4, X = =I,, p = -B/8 + 2. 
Conditions (2.1) yield the system of inequalities 

6 <B < 10.4; -2O< B < 0; -18.4 <B 

Since B may take positive, as wells as negative values, it is clear that we can have 
s* > 0 also when II*- 1~0 as well as when u*-1>0, and this implies the instability. 
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